PROSPECTUS

desiderata
ABOUT SPECIAL COLLECTIONS

Special Collections is Carnegie Mellon’s repository for rare books, art, manuscripts, and early scientific instruments and calculating machines. It is envisioned as an interdisciplinary workshop, where humanistic modes of inquiry combine with innovative tools to study historical technologies, books, and artifacts.

Special Collections curates the long history of four kindred fields—computing, robotics, cryptology, and information technology—from the Renaissance to the twentieth century. Few institutions have collected methodically in these areas, leaving a gap in the cultural record. Carnegie Mellon University’s reputation for innovation in these and adjacent fields makes it the ideal institutional home for a collection that fills this gap. It is this collection we aim to build.

Your support helps us advance this objective by funding acquisitions that make possible transformative exhibitions, research, and other programs that bring students, scholars, and members of the public into Special Collections and CMU’s Libraries.

Special Collections is open to the CMU community and to the public. Curator of Special Collections, Sam Lemley, administers access, acquisitions, and interpretation.

DESIDERATA & RECENT ACQUISITIONS

This list of desiderata—a Latin term meaning ‘things desired’—offers a virtual exhibit of the kinds of objects and books Carnegie Mellon University’s Special Collections acquires and curates. Each entry offers a short description and a price estimating the cost to acquire the object at auction or in the antiquarian book market. The first section, on the other hand, lists books and objects obtained: long-held high points and recent acquisitions bought or donated that fit with our current collecting priorities and themes.

To learn more about Special Collections’ acquisition and donation strategy, visit: library.cmu.edu/special-collections
high points & recent acquisitions

A selection of treasures held in Special Collections along with some recent purchases and donations.
PART I: HIGH POINTS & RECENT ACQUISITIONS

1. **SHAKESPEARE**
An exceptional collection of literary rarities including "the book that refrained Shakespeare's posthumous reputation" - Emma Smith

- Printed in 1623—seven years after Shakespeare's death—
- the First Folio was the earliest comprehensive gathering of Shakespeare's plays in print; it established the version of Shakespeare that is read and performed today. The First Folio contains 36 plays, including eighteen that are otherwise unrecorded. These plays were reprinted in 1632 (the so-called Second Folio), 1663 (the Third Folio), and again in 1683 (the Fourth Folio). Carnegie Mellon holds two copies of the second, third, and fourth folios in addition to a copy of the First Folio, donated by Pittsburgh entrepreneur and book collector Charles J. Rosenbloom in 1974. CMU boasts one of the best collections of Shakespearean folios in the United States.

2. **SHELLEY**
One of the earliest literary depictions of artificial intelligence, a pristine copy of the first edition

Mary Shelley's Frankenstein remains one of the most influential works of literature in the English canon. A pivotal work in the genre of Gothic fiction, it takes on added relevance at CMU, where it is shelved alongside works by Alan Turing and other pioneers of artificial intelligence. Shelley’s monster evoked the idea that intelligence can be made, though with the potential for unforeseeable and unnerving results. Shelley’s book is one of the earliest printed books held in Special Collections. Purchased by Henry Foster Sr. (1888-1976) in 1954 from bookseller H.P. Kraus, CMU's copy was deposited with the Libraries as part of the Posner Memorial Collection in 1978. The Posner Collection contains many important bookseller H.P. Kraus, CMU's copy was deposited with the Libraries as part of the Posner Memorial Collection.

3. **LEIBNIZ**
A rare illustrated description of the first general purpose mechanical computer and a twentieth century replica

Leibniz—widely known for inventing calculus independently of Isaac Newton—was also a pioneer of computer design. His Brief Description of an Arithmetic Machine, published in 1710, announced the invention of the stepped-reckoner, a complex mechanical calculator capable of addition, subtraction, multiplication, and division—the literal definition of "artificial intelligence." Leibniz wrote, was their ability to render calculation "teitsch, gewobelt, gewild"—easy, fast, and reliable. Leibniz's paper includes an engraved figure showing the device and a replica (pictured), fabricated by modelmaker Roberto Guatelli (1904-1993) between 1940 and 1960. Only one of Leibniz's original machines survives today.

4. **TURING**

The conceptual basis of modern artificial intelligence

Written during a period of breathtaking inventiveness while at the University of Manchester, Turing's paper laid out a thought experiment known today as the Turing Test, but called "the imitation game" in its seminal The game was simple: a human participant would exchange a series of typed interactions with two respondents, a computer and a human being. Each respondent—one of facts, the other circuit-bound—remained hidden behind a partition. After a set period of time, if the interrogator failed to distinguish one from the other, the computer would, in effect, win; such a machine could be said to think. This became the guiding idea behind modern artificial intelligence. CMU's copy was in circulation at Hume Library until last year, when it was transferred to Special Collections.

5. **EUCLID**
The first printed book to contain mathematical diagrams, and Euclid's first appearance in print, as part of the Posner Memorial Collection

Euclid's treatise on the elements of geometry is of profound importance in the history of mathematics and the mathematical sciences. Printed only thirty years after the invention of the printing press, this is one of the earliest printed books held in Special Collections. Purchased by Henry Foster Sr. (1888-1976) in 1954 from bookseller H.P. Kraus, CMU's copy was deposited with the Libraries as part of the Posner Memorial Collection in 1978. The Posner Collection contains many important works in the history of science and technology, including a first edition of Nicolaus Copernicus's De revolutionibus orbium coelestium (1543)—the first work since antiquity to propose a heliocentric model to account for planetary motion—and first editions of works by Isaac Newton, Marie Curie, Charles Darwin, Johannes Kepler, Galileo Galilei, Andreas Vesalius, and others.

6. **DELLA PORTA**
A paper cipher machine

Giambattista della Porta's De Furtivis Literarum (On Secret Writing) contains a number of paper cipher discs, or volvelles (from the Latin, volvere, to turn). These carefully mounted semimechanical discs rotate on an axial piece of thread to encrypt or decrypt any message. Pictured here is one such cipher disc in a copy of the 1591 edition of Porta's book held in CMU's Special Collections and acquired last year.

The pages of Porta's book are themselves instruments capable of vexing any text under the thousands of character combinations supplied by their polyalphabetic cipher. The underlying mechanics of the Enigma—two of which are held in Special Collections—are more advanced, but no different: rotating discs establish fleeting links between plaintext and ciphertext.

Della Porta was a Renaissance polymath, a founding member of the élite Accademia dei Lincei and a friend of Galileo.

7. **ENIGMA M3**
An object of incredible electro-mechanical complexity with a dark history

The Enigma M3 (serial no. A5001), pictured: encrypted and decrypted dispatches for the Nazi armed forces during World War II. The story of its decipherment—accomplished in two phases, first by Marian Rejewski of Polish intelligence and then by Alan Turing and a team of cryptanalysts at Bletchley Park—is well known. The battery-operated Enigma M3 encrypts messages using an array of three stepped wheels that advance with each stroke of its typewriter-like keys. The resulting jumble of ciphertext is nearly unbreakable, but proved susceptible to the common code-breaking techniques of frequency analysis and crib marking. These long standing deciphering techniques were made more effective with the help of early computers.

CMU's Enigma M3 came to Special Collections with the Tuthill-Mc Cordock Collection in 2018. The M3 is the most common model of the Enigma, with approximately 500 extant. Special Collections also holds a far rarer Enigma M4 (serial M1), used by the Nazi Kruppmunze to encrypt sensitive communications regarding its U-boat fleet.

An early book on mechanical computation

John Napier—best known for his invention of logarithms—coined the term rabdology to describe a method for calculating with wooden rods. These rods were carved or stamped with numbers that, when aligned, reduced complex mathematical operations to rudimentary arithmetic. Napier’s book on rod-computing also contains an illustrated description of another calculating device, called the Promptuary. With a complex apparatus of labeled rods and shuttered panels mounted inside a box-like frame, the Promptuary could be programmed to convert multi-digit mathematical operations into basic lattice multiplication. Napier’s depiction of the promptuary (pictured) bears an uncanny resemblance to early mainframe computers. Napier’s work on rabdology, first published in 1617, is considered the first book on mechanical computation.

AT&T

PICTUREPHONE

Mod II (set of 2)

The midcentury precursor to Zoom, Skype, and Facetime

The Picturephone Mod II was a technological marvel. Its 5.5 x 5 inch screen offered a full-motion black and white picture with 250 lines resolution at 30 interlaced frames per second. The device also contained an innovative silicon photodiode array camera with a resolution of 0.8 megapixels; a small integrated mirror could be flipped allowing it to transmit either the user or documents laid in front of the device. The picture tube and integrated circuits were made at the Western Electric plant in Reading, Pa, and the first transmission using the Picturephone occurred in Pittsburgh. For transmission, the Picturephone required three twisted pairs of ordinary telephone cable, two pairs for video and one for audio and signaling. The Picturephone could also call mainframe computers and render rudimentary graphics, with user input provided via a phone’s number keypad.
PART 2

desiderata

When E. returns the Word, he immediately looks where the Window, and by putting them, as to the sky, into the Window, he will again find the knee of the window, by which he will not be able to control it. This is the deduction of the great intelligence. As the privacy of the lines above in the Window, and containing out of the book of the looks - in, if possible, and these the pleats of the intelligence. And this E. preserves all the while he calls upon:

```
A N I T A
S E I N S N O T H A L
S E I N S S O N T H A L
S E I N S S O N T H A L
S E I N S S O N T H A L
S E I N S S O N T H A L
S E I N S S O N T H A L
S E I N S S O N T H A L
S E I N S S O N T H A L
S E I N S S O N T H A L
```

...and the figures and the names of the six letters, and as in the street out:

```
A N I T A
S E I N S N O T H A L
S E I N S S O N T H A L
S E I N S S O N T H A L
S E I N S S O N T H A L
S E I N S S O N T H A L
S E I N S S O N T H A L
S E I N S S O N T H A L
S E I N S S O N T H A L
S E I N S S O N T H A L
```

A tree was entered, and a figure being presented between them, represents the figure in the Window, which is in the Window, which is seen by the image of the image, and then the figure in the Window, and is in the street out.
PART II: DESIDERATA

TRITHEMIUS
The first printed book on cryptographic communication, or “cabalistic writing.”
This seventeenth-century edition of the first printed book on cryptographic communication contains movable volvelle cipher discs. The book is itself a cryptographic machine, its rotating dials the material ancestors of Enigma.

$6,000 - $10,000

PASCAL
An illustrated account of the first commercially produced mechanical calculator
This five-volume set of Pascal’s complete works includes the first western treatise on cryptography and secret writing, De cypher, ca. 1617

$2,300 - $3,000

ALBERTI
The first western treatise on cryptography
This posthumous first edition of Alberti’s works includes the first western treatise on cryptography and secret writing, De cypheria (ca. 1466). Alberti embodied the Renaissance: an artist, poet, architect, mathematician, and student of the occult, he found in cryptography an untapped science and devised one of the first polyalphabetic substitution ciphers—one of the most secure forms of alphabetic encryption.

$3,000 - $5,000

HAGELIN CD-57
A pocket-sized cipher machine
The CD-57 is a pocket-sized (14 x 8 x 4 cm) variant of master cryptographer Boris Hagelin’s virtually unbreakable CX-52 cipher machine. First manufactured by the Swiss firm Crypto AG in 1957, the CD-57 was used in international spycraft until the 1970s and saw its most active use during the height of the Cold War. The CD-57 used a deck of six wheels for its polyalphabetic substitution cipher; it also could be converted to an undecipherable one-time tape (OTT) mechanism.

$0 - $1,200

BACon
The origin of binary code and the first English work on cryptography
In The Advancement of Learning, Bacon invented a biliteral (two-lettered) cipher, the principles of which laid the groundwork for digital computing and, more directly, binary code. With this cipher, Bacon demonstrated that “anything could signify anything.” Bacon was the first to write systematically on ciphers and cryptography in English.

$15,000 - $18,000

FRIEDMAN
America’s “first female cryptologist,” a leader of US decryption efforts during WWI
Elizbeth Friedman’s first cryptanalytic assignment was with Elizabeth Wells Gallup, who sought to prove that Francis Bacon, not William Shakespeare, had written Shakespeare’s plays. Gallup’s theory rested on the belief that early printed copies of Shakespeare’s works contained ciphered messages encoding clues to Bacon’s authorship.
The work of Elizbeth Friedman is slowly regaining recognition. Friedman led the Coast Guard Cryptanalytic Unit (Unit 387) during World War II, where she played a leading role in the decryption of the Japanese Purple Code, and was in regular contact with the Bletchley Park Intelligence Service Knox (ISK).

$1,200 - $3,000

NAPIER’S BONES
A rare work on an early cryptographic machine
Among the rarest books on cryptography and clandestine communication, this treatise was informed by Morland’s experience deciphering coded military dispatches during the English Civil War (1642-51). The final section depicts a “Cycloptic Cryptographic Machine” that held a series of minute cipher wheels set with a thumb-like stylus. Relying on the rotary alignment of plaintext- and corresponding ciphertext characters, this device is an analog precursor of the Enigma Machine. None of Morland’s devices are known to survive, making this book the sole record of their design and operation.

$15,000 - $20,000

MORLAND
A rare work on an early cryptographic machine
Among the rarest books on cryptography and clandestine communication, this treatise was informed by Morland’s experience deciphering coded military dispatches during the English Civil War (1642-51). The final section depicts a “Cycloptic Cryptographic Machine” that held a series of minute cipher wheels set with a thumb-like stylus. Relying on the rotary alignment of plaintext- and corresponding ciphertext characters, this device is an analog precursor of the Enigma Machine. None of Morland’s devices are known to survive, making this book the sole record of their design and operation.

$15,000 - $20,000

IMAGES of ITEMS 1, 2, 3, 6, 8
Courtesy of the Folger Shakespeare Library

IMAGES of ITEM 7
Courtesy of the National Museum of Scotland
SUPPORT SPECIAL COLLECTIONS

Acquisitions Fund
Support the acquisition of rare books and artifacts, including the items listed in this pamphlet.

Fellowships & Research Grants
Contribute to a program of grants and fellowships that supports the research of CMU students and scholars using Special Collections.

Exhibitions & Facilities
Support immersive, groundbreaking exhibitions and improvements to facilities in Special Collections.

Preservation & Conservation
Support professional conservation work on Carnegie Mellon’s rare artifacts and books, ensuring their accessibility for future generations of students and scholars.

For more information or to support Special Collections, please contact:

Morgan Walbert
Associate Director of Development
University Libraries
412-420-4958
mwalbert@andrew.cmu.edu